Topic 3-Well-defined Operations

Well-defined operations

Let's say your friend says
"let's make a new operation
on the rationals Q !"
And you suy "yeah we should!"
They suy "What about this one?

$$\frac{a}{b} \frac{c}{d} = \frac{a+c}{b+d}$$

new operation
symbol
You say "lok let's do some
calculations with this
great new operation"

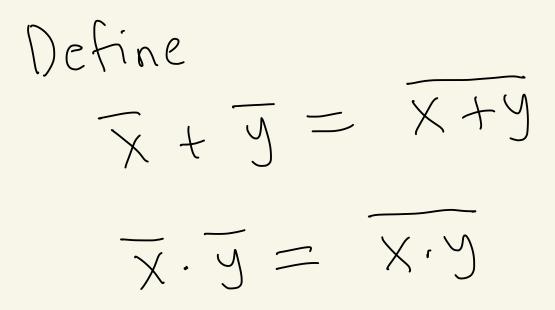
 $\frac{2}{7} \oplus \frac{1}{5} = \frac{2+1}{7+5} = \frac{3}{12} = \frac{1}{4}$ $\frac{1}{2} \oplus \frac{2}{3} = \frac{1+2}{2+3} = \frac{3}{5}$ Youre like $\frac{2}{3} \oplus \frac{5}{-3} = \frac{2+5}{3-3} = \frac{7}{0} \checkmark$ "thats not good $\frac{2}{4} \oplus \frac{20}{30} = \frac{2+20}{4+30} = \frac{22}{34} = \frac{11}{17} \int_{\text{Capual}}^{\text{Not}} \int_{\text{C$ $J_{2} \oplus \frac{2}{3} = \frac{3}{5} \in$ Youre like lithats really not goud " an example of an This is that is not well-defined. operation

Def: Let S be a set. An Operation D on S is Well-defined if the following are true: () For every X, Y ES we have that X D Y ES "closed" Under

(2) If some or all of the elements of S can be expressed in more than one way, then we must show the following: For every $a,b,c,d \in S$, if a=b and c=d, then $a \oplus c = b \oplus d$.

Let's define two operations on the set Zn E classes modulo n

Given X, y E ZLn.



 $E_X: Let n = 4.$ $\overline{O} = \{ X \mid X \in \mathbb{Z}, X \equiv O \pmod{4} \}$ $= \{2, ..., -12, -8, -4, 0, 4, 8, 12, ...\}$ $T = \{ X \mid X \in \mathbb{Z}, X \in \mathbb{Z} \}$ $= \{ \ldots, -7, -3, 1, 5, 9, \ldots \}$ $\overline{2} = \{ \frac{1}{2}, \frac{1}{2}, -6, -6, -2, 2, 6, 10, \dots \}$ $\overline{3} = \{1, ..., -5, -1, ..., 3, -7, ..., \}$ $\mathbb{Z}_{4} = \{\overline{2}, \overline{1}, \overline{2}, \overline{3}\}$ 7 = 3, -10 = 2, 9 = 1

Example computations in Zy: 2+3=2+3=5= -2 = -10+7 -10+7= $-3 \equiv 1 \pmod{4}$ $\overline{\left|\cdot\right\rangle} =$ $\overline{\mathcal{I}}$ 2 0 3 11 Super-duper 9.6= $\overline{54} = 2$ 6 eq. rel. thm \3 ≤ 4 Y

Theorem: Let
$$n \in \mathbb{Z}$$
, $n \ge 2$.
The following operations are
Well-defined on \mathbb{Z}_n .
Given $\overline{a}, \overline{b} \in \mathbb{Z}_n$ define
 $\overline{a} + \overline{b} = \overline{a} + \overline{b}$
 $\overline{a} \cdot \overline{b} = \overline{a} \overline{b}$
Proof: Let's check the two
Conditions to be well-defined.
Condition 1: Given $\overline{a}, \overline{b} \in \mathbb{Z}_n$
with $a, \overline{b} \in \mathbb{Z}$, then
 $a + \overline{b} \in \mathbb{Z}$ and $\overline{a} \cdot \overline{b} \in \mathbb{Z}$.
So, $\overline{a} + \overline{b} \in \mathbb{Z}_n$ and $\overline{a} \cdot \overline{b} \in \mathbb{Z}_n$

condition 2: Suppose $a, b, c, d \in \mathbb{Z}$ and a=c and b=d in \mathbb{Z}_{n} . We must show that a+b=c+dand $\overline{\alpha} \cdot b = \overline{c} \cdot d$. Since a=c and b=d, by the super-duper equivalence class theorem we have $a \equiv c \pmod{n}$ and BED (mod n).

Thus, $n \mid (a-c)$ and $n \mid (b-d)$. Su, $\alpha - c = nk$ and b - d = nlwhere k, lEZ. Then, (a+b)-(c+d)=(a-c)+(b-d)= nk +nl = n(R+l).Since $k+l \in \mathbb{Z}$ this gives $n\left[\left(\alpha+b\right)-\left(c+d\right)\right]$. Thus, $(\alpha+b) \equiv (c+d) \pmod{n}$. Hence a + b = a + b = c + d = c + d def of +

Also, $= \alpha(d+\eta l)$ ab-cd -(a-nk)d= ad + n(al) $-\alpha d + n(k\alpha)$ = n(al+ka)altraEZ since a, l, k E Z. Su, n (ab-cd). Thus, ab = cd (mod n). Hence $a \cdot b = ab = cd = z \cdot d$. $def of \cdot$

EX: (HW problem modified) $\mathbb{Z}_{7} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\},\$ In calculate 1473, and 5.2+T+2.4.6, and 1455'? Reduce our answer to x where $0 \leq X \leq 6.$ $\frac{1}{1473} = 3$ 210 7[1473 07 5.2+1+2.4.6_7 03 $= 10 + 1 + 8 \cdot 6 = 3$ $= \frac{1}{3} + \frac{1}{1 + \frac{1}{1 \cdot 6}} = \frac{1}{8 = 1} = \frac{-0}{3}$

 $= \frac{74+6}{10=3}$

Another way:

$$5.2+7+2.4.6$$

 $= 10 + 7 + 48$
 -56
 -56
 3

Another example in
$$\mathbb{Z}_{7}$$

 $1455^{10} = (\overline{6})^{10}$
 $= (\overline{-1})^{10} = \overline{1}$
 $\overline{55}$
 -14
 $\overline{55}$
 -14
 $\overline{55}$
 -14
 $\overline{55}$
 -49
 $\overline{55}$
 -49